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Abstract
There is disagreement among cognitive scientists as to whether a key computational framework – the Simple Recurrent
Network (SRN; Elman, Machine Learning, 7(2), 195–225, 1991; Elman, Cognitive Science, 14(2), 179–211, 1990) – is
a feedforward system. SRNs have been essential tools in advancing theories of learning, development, and processing in
cognitive science for more than three decades. If SRNs were feedforward systems, there would be pervasive theoretical
implications: Anything an SRN can do would therefore be explainable without interaction (feedback). However, despite
claims that SRNs (and by extension recurrent neural networks more generally) are feedforward (Norris, 1993), this is not
the case. Feedforward networks by definition are acyclic graphs – they contain no loops. SRNs contain loops – from hidden
units back to hidden units with a time delay – and are therefore cyclic graphs. As we demonstrate, they are interactive in the
sense normally implied for networks with feedback connections between layers: In an SRN, bottom-up inputs are inextricably
mixed with previous model-internal computations. Inputs are transmitted to hidden units by multiplying them by input-to-
hidden weights. However, hidden units simultaneously receive their own previous activations as input via hidden-to-hidden
connections with a one-step time delay (typically via context units). These are added to the input-to-hidden values, and the
sums are transformed by an activation function. Thus, bottom-up inputs are mixed with the products of potentially many
preceding transformations of inputs and model-internal states. We discuss theoretical implications through a key example
from psycholinguistics where the status of SRNs as feedforward or interactive has crucial ramifications.

Keywords Interaction · Neural networks

Introduction

Simple Recurrent Networks (SRNS; Elman, 1990; Elman,
1991) have been an essential tool in the cognitive scientist’s
computational toolbox for nearly 35 years. Conceptually,
SRNs are typically compact neural networks that are trained
to predict the next element in a sequence given the cur-
rent element. A simple form of memory – a context layer
that contains a copy of internal states from the preceding
time step – provides the SRN with surprisingly robust abili-
ties to learn and process complex recursive sequences (e.g.,
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Elman, 1991; Cleeremans&McClelland, 1991; Cleeremans,
Servan-Schreiber, & McClelland, 1989). SRNs have been
applied to a wide range of perceptual, cognitive, and action
domains, and were a central tool in paradigmatic shifts in
cognitive theory near the end of the last century (see in
particular Elman, 1996). SRNs have been and continue to
be used extensively to advance theoretical understanding in
many domains (for reviews, see: Elman, 1996; Plunkett &
Elman, 1997; Thomas & McClelland, 2023) such as mem-
ory (e.g., Botvinick& Plaut, 2004; Botvinick& Plaut, 2006),
language development (e.g., Frank, Monaghan, & Tsoukala,
2019), and in particular, psycholinguistics of language pro-
cessing (e.g., Crocker & Brouwer, 2023; Christiansen &
Chater, 1999a; Christiansen & Chater, 1999b). The broad
scope of SRNs is why the claim that SRNs are purely feed-
forward (Norris, 1993, which we discuss in detail below)
has such broad theoretical implications. To explain why this
matters, let us consider the feedback debates in cognitive
science.
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Feedback debates

A central, recurring debate in the cognitive and neural
sciences is whether our perceptual, cognitive, and motor
capacities are autonomous (purely feedforward and/or encap-
sulated from cognitive influence; e.g., Norris, McQueen,
& Cutler, 2000; Firestone & Scholl, 2016) or interactive
(feedback systems where inputs or lower levels of rep-
resentation are directly modulated by higher levels; e.g.,
Clark, 2013; Gilbert & Li, 2013; McClelland, Mirman, &
Holt, 2006; Magnuson, Crinnion, Luthra, Gaston, & Grubb,
2024; Lupyan, 2015; Lupyan, Rahman, Boroditsky, & Clark,
2020; Proffitt, 2006; Proffitt, 2013; Schnall, 2017a; Schnall,
2017b). There are at least two levels of this debate. One
is whether there exist encapsulated perceptual or cognitive
modules, which may take input from other modules but are
not influenced by them while carrying out their modular
functions (Fodor, 1983), or whether there is continuous inter-
action among relatively specialized systems (Spivey, 2006).
The second level, which is our concern here, is whether
there is interaction within perceptual or cognitive systems,
where prior knowledge (e.g., knowledge of the words in your
language) directly influences perceptual processing (such as
encoding of phonological segments).

The debate has perhaps had the greatest theoretical
importance and staying power (i.e., irreconcilability) in the
psycholinguistic domain of spoken word recognition. Key
origins of the debate emerged with various discoveries of
apparently top-down effects in spoken and visualword recog-
nition. For example, participants are faster to identify a letter
like ‘A’ in the context of a printed word (e.g., SCAT) than in
isolation (Reicher, 1969), just as listeners are faster to detect
a sound such as /k/ in the context of a spoken word (e.g.,
/kæat/ [CAT]) vs. a spoken pseudoword (e.g., /kυt/, which
rhymes with soot; Rubin, Turvey, &VanGelder, 1976). Such
word-superiority effects motivated theories that letters or
sounds in lexical contexts receive two sources of input: a
bottom-up signal, and also top-down support from lexical
representations (a prime motivation for the development of
interactive activationmodels, e.g., Rumelhart &McClelland,
1982;McClelland&Rumelhart, 1981;McClelland&Elman,
1986). Thus, as the orthographic pattern CAT or spokenword
/kæt/ is experienced (even as the bottom-up encoding of the
target letter or sound is progressing), any activated words
send supportive feedback to their constituent elements (let-
ters or phonemes), speeding their activation (as simulated in
interactive activation models we have just cited).

There are numerous additional examples of apparent top-
down effects. Ganong (1980) discovered that if participants
have to identify steps from a continuum from one sound to
another (e.g., /l/ to /r/) as one endpoint category or the other,
the results change depending on whether one endpoint, both
endpoints, or neither is a word. If the continuum is from

‘ull’ to ‘ur’ (two nonwords), we will observe an S-shaped
identification pattern, with items close to the ‘ull’ endpoint
mostly identified as containing /l/, items close to the ‘ur’ end-
point mostly identified as /r/, and a fairly steep shift across
the middle of the continuum. If both endpoints are words
(e.g., BALL to BAR), the result would be similar (though
word-frequency matters; Connine, Titone, & Wang, 1993;
Politzer-Ahles, Lee, & Shen, 2020). If instead one endpoint
is a word (GALL) and the other a nonword (GAR), the steep
part of the curve shifts away from the lexical endpoint (that
is, more continuum steps are identified as the lexically con-
sistent sound [/l/ in this example], and the shift would go in
the opposite direction if the /r/ item was a word [e.g., CHAR
vs. CHALL]). This lexically mediated phoneme restoration
is commonly called simply ‘the Ganong effect.’ Similarly, if
a phoneme in a word is replaced by noise, participants have
great difficulty discerningwhether any part of the speechwas
missing rather than there just being noise added to the signal
(Warren, 1970). In contrast, listeners are much better at such
judgments when there is no lexical context (e.g., for isolated
segments; Samuel, 1981a). Generally, listeners’ expectations
interact with bottom-up acoustic signals to modulate speech
perception (e.g., Samuel, 1981b, 1996, 1991, 1997).

Norris et al. (2000) argued that all existing demonstrations
of top-down effects could be explained by an autonomous,
fully feedforward process where lexical knowledge could be
consulted post-perceptually. In the domain of spoken word
recognition, there is a multitude of results consistent with
top-down modulation of sublexical encoding in speech pro-
cessing (e.g., Cibelli, Leonard, Johnson, & Chang, 2015;
Getz & Toscano, 2019; Gow, Segawa, Ahlfors, & Lin, 2008;
Gow & Olson, 2015; Leonard, Baud, Sjerps, & Chang,
2016; Myers & Blumstein, 2008; Noe & Fischer-Baum,
2020; Samuel, 1997; Samuel, 2001). While we disagree with
the claim that autonomous models could simulate all (or
even many) of these (few have actually been simulated with
autonomous models), Norris et al. (2000) acknowledged that
there was one paradigm that they agreed is consistent with
interactive models but incompatible with autonomous mod-
els: Lexically Mediated Compensation for Coarticulation
(LCfC; for a more recent discussion, see Norris, McQueen,
& Cutler, 2016).1

LCfC was an innovation by Elman and McClelland
(1988). Their paradigm draws on a top-down effect (Ganong)
and a phonetic effect called Compensation for Coarticula-
tion (CfC). In CfC (Mann & Repp, 1980; Repp & Mann,

1 Samuel (2001) devised a paradigm that provides equally ormore com-
pelling support for interaction than LCfC: Lexically restored phonemes
can potently drive selective adaptation. Proponents of autonomousmod-
els tend to dismiss this paradigm based on objections similar to those
they raise about LCfC (e.g., suggesting that transitional probabilities of
some degree could explain the results without appealing to feedback),
which we discuss shortly.
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1981), when a sound with a front place of articulation (POA)
(e.g., /l/) is followed by a sound that is ambiguous between
another front sound (/t/) and a back POA sound (/k/), listeners
tend to identify the second sound as the one with the more
back POA. Repp and Mann (1981) explained this as due to
coarticulation: When a speaker must transition from a front
POA to a back POA, physical constraints will make them
less likely to reach the canonical back POA for the second
segment. The opposite happens after a back POA segment
(after /r/ with back POA, the ambiguous segment between /t/
and /k/ is more likely to be identified as /t/, which has front
POA). Elman andMcClellandmodified the CfC paradigm by
making the initial context segment also ambiguous between
front and back POA. They reasoned that if that ambiguous
segment could be restored based on lexical context (e.g., as
/l/ given GU# [consistent with GULL], where # is ambigu-
ous between /l/ and /r/, vs. as /r/ given CHA# [consistent
with CHAR]) directly affecting the phonetic level, then the
restored phoneme should driveCfCon the following ambigu-
ous context (given a sequence like /cha#/-/#ul/, where lexical
context would restore the first # as /r/ but the second would
be ambiguous between TOOL and COOL). If ‘restoration’
is actually post-perceptual, then it should have no effect.

Elman and McClelland reported robust LCfC. However,
Pitt and McQueen (1998) tested the hypothesis that LCfC
could be due to sublexical regularities, such as transitional
probabilities (TPs) between phonemes. They reported robust
TP-mediated CfC using nonword contexts with strong TPs,
and failure to observe LCfC using words with neutral transi-
tional probabilities. Norris et al. (2000) cited this as evidence
that themediation inLCfCwas sublexical and consistentwith
a feedforward system. They, like Pitt and McQueen, also
cited a chapter by Norris (1993) as evidence that LCfC could
be simulated by a feedforward system sensitive to transi-
tional probabilities. However, that ‘feedforward system’ was
an SRN.

This raises our key question:Are SRNs autonomous, feed-
forward systems, or interactive systemswith feedback? In the
next section,wepresent simplemathematical demonstrations
that SRNs are not feedforward systems. Then we will return
briefly to the details of Norris (1993), and the theoretical
implications for SRNs as models of spoken word recogni-
tion and other aspects of human perception and cognition.

Feedforward, feedback, and recurrent neural
networks

Feedforward and recurrent networks are clearly distin-
guished in terms of formal definitions. For example, Prince
(2023) puts it like this: “Neural networks in which the con-
nections form an acyclic graph (i.e., a graph with no loops ...
) are referred to as feed-forward networks” [p. 35], while

“recurrent neural networks [are] networks for processing
sequences, in which the previous output is fed back as an
additional input as we move through the sequence...” [p.
203]. That is, recurrent networks have loops, and this puts
them outside the class of feedforward networks. Even one
step of recurrence, as in an SRN, requires a loop. Similarly,
Jurafsky andMartin (2024) put it like this: “A recurrent neural
network (RNN) is any network that contains a cycle within
its network connections, meaning that the value of some unit
is directly, or indirectly, dependent on its own earlier outputs
as an input.” [ch. 8., p. 1].

To assess whether SRNs are feedforward, let us first con-
sider the architecture of a standard feedforward network, as
schematized in Fig. 1. Every input node has a weighted for-
ward connection to every hidden node, and every hidden node
has a weighted forward connection to every output node.
Nodes sum their inputs and then apply an activation function
(typically a nonlinear one, such as a sigmoid or hyperbolic
tangent). Activations then feed-forward to the next layer via
weighted connections. So the hidden layer input is calculated
as the input vector multiplied by the input-to-hidden weight
matrix. Hidden layer activations are calculated by applying
an activation function (also typically nonlinear). The first
processing step is when inputs are multiplied by the input-to-
hidden weights to calculate hidden layer activations (Eq. 1).
Then the hidden layer activations multiplied by hidden-to-
output weights serve as the input to the output layer (Eq. 2),
and output activations are calculated by applying activation
function g (which may or may not be the same as f ) to each
node’s summed inputs (Eq. 3). The essential characteristic
here is that the feedforward network is an acyclic graph:
There are no cycles (loops) within the network, and so no
way for information to flow in any direction except forward.
In particular, the hidden layer activations depend solely upon
bottom-up inputs and the input-to-hidden weights.

B = I × Wih (1)

H = f (B) (2)

O = g(H × Who) (3)

Fig. 1 Basic feedforward network architecture. Layers are fully con-
nected only in the forward direction (every node at the inferior level
has a forward, tunable, weighted connection to every node at the supe-
rior level). Vertical dots stand for nodes from 2 to n-1, which are not
depicted. Reproduced from Magnuson (2022a), with shading added
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Now consider the feedback network depicted in Fig. 2,
where we have added feedback connections from output to
hidden nodes. Now the hidden units receive two sources of
input: the actual bottom-up inputs, but also top-down input
from the output nodes. Now the hidden unit states follow
from multiplying the inputs by the input-to-hidden weight
matrix and multiplying the output activations by the output-
to-hidden weights. The hidden inputs are the sum of those
two vectors, to which the activation function is applied. So
while in the feedforward network the hidden units were only
influenced by bottom-up inputs, now they are influenced by
both bottom-up inputs and top-down feedback. This means
that the activations in the hidden layer are an inextricable
mixture of bottom-up and top-down signals. In contrast to the
feedforward network, the feedback network graph is cyclic:
i.e., it has loops (cycles) that allow information to flow both
forward and backward.

To put this mathematically, consider Eqs. 4-7. Equation 4
describes the bottom-up input to the hidden layer (inputs
multiplied by input-to-hidden weights, identical to Eq. 1).
Equation 5 describes the top-down input to the hidden layer
(output activations from the previous time step multiplied
by output-to-hidden weights). Equation 6 states that the new
hidden activations, H , result from summing B and T and then
applying activation function f . Since B and T are summed,
there is no way to distinguish the two sources of inputs to the
hidden layer. This is the crux of objections to feedback (Nor-
ris et al., 2000): Bottom-up inputs are immediately mixed
with top-down signals, making truly veridical perception
impossible. Equation 7 describes the calculation of output
activations. The crucial difference compared to the feedfor-
ward network is that here, the hidden layer activations depend
on both bottom-up inputs (B) and top-down feedback (T ).

B = I × Wih (4)

T = Ot−1 × Woh (5)

H = f (B + T ) (6)

O = g(H × Who) (7)

...
...

...

I 1

I n

H 1

H n

O1

On

Input layer Hidden layer Output layer

Fig. 2 Basic feedback network architecture. We simply add connec-
tions from one layer back to nodes in a lower layer (highlighted as red
connections here). Reproduced from Magnuson (2024a)

Now let us consider the SRN architecture, as depicted
in Fig. 3. We have all the components of the feedforward
network, but with the addition of context units. These are
activated via special, ‘copy-back’ connections that simply
duplicate the activation of corresponding hidden nodes from
the previous time step to the context nodes. For example, the
first context node has only one connection from the hidden
layer, from the first hidden node. Context nodes are fully con-
nected to hidden nodes in the forward direction (i.e., every
context node has a tunable, weighted connection to every hid-
den node, including its own source node). This innovation
provides the network with the ability to retain information
over multiple processing steps. Depending on the pressures
implied by the input–output mapping to be learned, the net-
work can learn to encode and retain information over many
time steps (by tuning the context-to-hidden weights, primar-
ily, though the input-to-hidden weights can also participate).
Elman (1990, 1991) famously innovated next-item prediction
as a means for a network to be trained by ‘self-supervised’
learning, where the network attempts to predict the next item
in a sequence and then uses the discrepancy between its
prediction and the actual next input as the error signal for
training.

Let us consider this concretely with simple equations.
Equation 8 describes the part of the input to the hidden
layer that is purely bottom-up: inputs multiplied by input-to-
hidden weights (just as in Eq. 4). Equation 9 describes what
we will provisionally identify as the top-down component of

Fig. 3 Simple Recurrent Network (SRN) architecture. Layers are fully
connected in the feedforward direction (every node at the inferior level
has a tunable, weighted connection to every node at the superior level).
Dashed lines indicate 1-to-1 feedback connections (i.e., copy connec-
tions with a fixed weight of 1.0 and a one-step time delay) from each
hidden unit to its corresponding context unit. Vertical dots stand for
nodes from 2 to n-1, which are not depicted. Reproduced fromMagnu-
son (2022b), with shading added
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inputs to the hidden layer: the context activations multiplied
by the context-to-hidden weights. Equation 10 (identical to
Eq. 6) puts these together, and the new hidden activations,
H , result from applying the nonlinear activation function, f ,
to the sum of the two input components. Again, since B and
T are summed, there is no way for the network to distinguish
bottom-up from top-down contributions to H .

B = I × Wih (8)

T = C × Wch (9)

H = f (B + T ) (10)

Are SRNs autonomous or interactive?

Now we turn to the question of whether SRNs are feedfor-
ward and autonomous or have feedback and are therefore
interactive. Norris (1993) asserts that a diagram like Fig. 3
facilitates understanding of processing, but falsely gives the
impression that there are feedback connections in the net-
work. He suggests that this can be appreciated if we redraw
the network as in Fig. 4. Now the red connections are from
each hidden node to every hidden node (including self-
connections),with a timedelay of one step.These are tunable,
weighted connections that will be trained when the model is
trained.

Norris (1993) asserts that a diagram like this “...shows
that the delay connections are not really ‘top-down’ connec-
tions, they are just connections between the hidden units” (p.
217) and “...demonstrates that the network should properly
be thought of as a bottom-up system with delay connections
between the hidden units. No information is passed back
down to the input units” (p. 218).

However, the error here is that the input nodes have no
function in the network. They are in fact external, and func-
tion as placeholders or conduits for transmitting inputs to the
parts of the network that do things (e.g., integrate inputs and
transmit transformed outputs). The most prominent interac-
tive model of human speech processing, the TRACE model
(McClelland & Elman, 1986), also has input nodes that only

...
...

I 1

I n

H 1

H n

O1

On

Input layer Hidden layer Output layer

Fig. 4 SRN architecture redepicted with hidden-to-hidden connections
with a time delay (red lines) instead of with context nodes. Reproduced
from Magnuson (2024b)

serve to transmit external values for processing within the
network. In TRACE, these activate feature nodes, which
send activation forward to phoneme nodes. TRACE’s fea-
ture nodes do not receive feedback from phoneme nodes
by default. Phoneme nodes send activation to word nodes.
When TRACE operates in interactive mode, there is feed-
back from word nodes to phoneme nodes. The aspect of
this that, e.g., Norris et al. (2000) argued is objectionable, is
that when there is word-to-phoneme feedback, the phoneme
nodes no longer provide a veridical, direct mapping from
the bottom-up input. That is, the bottom-up input is the
product of applying input values to feature nodes, which
multiply their activations by the feature-to-phonemeweights;
but when feedback is ‘on’, phonemes also receive top-down
input that is the result of multiplying phoneme activations
by phoneme-to-word weights, and thenmultiplying resulting
word activations by word-to-phoneme weights (as in Fig. 2).
This is the critical level where top-down products are inex-
tricably mixed with bottom-up products.

Note that the Merge model (Norris et al., 2000) also has
input nodes that do not do anything except transmit stimula-
tion to upper levels. The phoneme inputs feed-forward to a
lexical layer and a phoneme decision level (which also gets
input from the lexical level). The key to the Merge architec-
ture is not protecting the input nodes, but rather performing
lexical-phonemic integration outside the bottom-up pathway.
In other words, the key goal is to isolate the lexical layer so it
cannot influence sublexical representations, such that lexical
activations are driven only by bottom-up signals and are not
contaminated by mixing model-internal computations with
the bottom-up pathway.

Thus, the key question is not whether there are nodes that
encode the pure bottom-up inputs – TRACE has that even
in interactive mode, and so does Merge. The key question is
whether there is a loop in the network that mixes top-down
information with bottom-up information within the bottom-
up pathway (as in TRACE,where lexical feedbackmodulates
phoneme activity, and so lexical activations are dependent on
their own prior activations, but not in Merge, where lexical-
phonemic integration occurs post-lexically, without affecting
the lexical layer activations).

As a further illustration, consider again the SRN depicted
as having lateral hidden-to-hidden time-delay connections
(Fig. 4). The first point where the external input to the SRN
has any impact on operations carried out by the SRN is when
they arrive at the hidden nodes. However, the hidden nodes
have two sources of input: the bottom-up signalmultiplied by
the input-to-hidden weights, and the hidden activations from
the previous time step multiplied by the hidden-to-hidden
weights.

Let us put this in mathematical form. Equation 11 states
that the bottom-up input to the hidden layer, B, is the prod-
uct of inputs and the input-to-hidden weights (note that it is
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identical to Eqs. 4 and 8). Equation 12 states that the top-
down (model-internal) input to the hidden layer, T , is the
product of the hidden activations at the previous time step
and the hidden-to-hidden weights (note that it is analogous
toEqs. 5 and 9, except the context states are redescribed as the
previous hidden activations multiplied by the hidden-hidden
weights; note also that the hidden-to-hidden weights corre-
spond exactly to the context-to-hidden weights from Eq. 9).
Equation 13 states that the new hidden activations, H , are the
sum of B and T pushed through the activation function (and
is identical to Eqs. 6 and 10). Note that Ht−1, the hidden acti-
vations at the previous time step, are the result of combining
the previous inputs (at step t − 1) with Ht−2, etc. Thus, at
the initial point where input impinges on the SRN (when it is
transmitted to the hidden layer), it is inextricably mixed with
the results of processing previous inputs.

B = I × Wih (11)

T = Ht−1 × Whh (12)

H = f (B + T ) (13)

Because Ht−1 is the output of the hidden layer at time
t−1, the value of H at time t is ‘dependent on its own earlier
outputs as an input’ (Jurafsky&Martin, 2024). Thus, an SRN
is cyclic, and is therefore interactive to the degree that the
first transformations it performs ([I ×Wih] + [Ht−1 ×Whh])
modulate the bottom-up inputs via knowledge that has been
acquired by training the network. Just as Eq. 6 describes a
feedback network and Eq. 10 describes an SRN depicted
with a context layer, Eq. 13 describes how the hidden states,
H , of an SRN are a mixture of bottom-up and top-down
information. Changing the SRNdepiction fromusing context
nodes to lateral, time-delayed connections does not change
the math, nor the fact that SRNs are interactive.2

2 A reviewer helpfully suggested that we address two additional, subtle
details about interaction. First, an architecturally interactive/feedback
network could become functionally non-interactive if, during training,
it set all recurrent/feedback connections to 0 (which could theoretically
happen if context information were irrelevant or misleading). Second,
similar logicwould apply tomodelswith ‘leaky integrator’ nodes,which
are another class of models where previous activation states can influ-
ence processing. We can think of each leaky integrator node having a
‘context’ node (a memory cell storing its previous state) and a fixed,
global ‘leak’ parameter, which governs the relative weight of a node’s
previous state and its current bottom-up input. Thus, inputs to leaky inte-
grator nodes are a mix of previous model states and bottom-up inputs.
Such models are similar to SRNs but differ in that they have only self-
connections (vs. full context-to-hidden connectivity in an SRN) and the
leak parameter is not tunable (i.e., the context-to-node weights are not
modified during training). In an otherwise non-recurrent architecture
(e.g., Usher & McClelland, 2001), leaky integrator nodes would make
such a network interactive and no longer purely feedforward (as long
as the leak parameter is not 1, which corresponds to full leakage and
therefore no influence of previous model states).

Reprise: Lexically Mediated Compensation
for Coarticulation (LCfC)

Now we return to the LCfC simulations conducted by Nor-
ris (1993). These simulations used an 11-feature code for
phoneme inputs and a lexicon of 50 words. Inputs were pre-
sented as a sequence of feature/phoneme patterns, and the
network was trained to activate the current word and the
current phoneme. Feature patterns were adjusted context-
sensitively atword boundaries, such that place features varied
with the context of the preceding phoneme (shifted slightly
back following a back POA, and slightly forward following a
front POA). The network learned those segment-to-segment
contingencies during training, and unsurprisingly, when a
context phoneme was replaced with an ambiguous pattern
that was only consistent with one word given the biphone
context (e.g., the preceding phonemes could only be followed
by /s/ or /S/), the network exhibited both Ganong (phoneme
restoration) and LCfC patterns.

Strikingly, in a related earlier chapter (Norris, 1990), Nor-
ris described the same network as implementing a feedback
loop from hidden units. In 1993, however, he asserted that
there is no form of feedback in an SRN because the recur-
rent connections are from hidden nodes to hidden nodes with
a time delay of one step. As we have already discussed,
the recurrent hidden layer connections in an SRN (whether
described as a context loop or hidden-to-hidden connec-
tions with a time delay) form a cycle and therefore the SRN
includes feedback: The hidden unit states at time t are depen-
dent on hidden unit states at time t−1. The hidden nodes can-
not distinguish which aspects of their input are external and
bottom-up (from the actual input nodes) and which are inter-
nal (from hidden nodes); the external inputs are mixed with
internal information, precluding veridical input encoding.

Given that the Norris (1993) chapter continues to be cited
as evidence that LCfC can be simulated without feedback,
there are crucial implications of our demonstration that SRNs
are models with feedback. In particular, this demonstration
illustrates that positive LCfC results (as observed, for exam-
ple, by Luthra et al., 2021) cannot be accounted for by a
purely feedforward architecture.3

3 Note that mixed results have been observed with the LCfC paradigm.
Luthra et al. (2021) note that ∼ 60% of LCfC tests have provided
results consistent with lexical feedback (closer to 70% with their own
results included). For example, while Samuel and Pitt (2003) and Mag-
nuson, McMurray, Tanenhaus, and Aslin (2003a) reported positive
results, McQueen, Jesse, and Norris (2009) were unable to replicate
the results of Magnuson et al. (2003a) even with the original materials
andobserved additional failures. Luthra et al. (2021) noted that few stud-
ies had pretested items to ensure that, tested separately, context items
could drive Ganong restoration and that target items were subject to
CfC with unambiguous context items. If the component effects cannot
be observed separately, there is no reason to expect LCfC to result when
context and target items are combined. Luthra et al. observed robust,
replicable LCfC when they limited their items to ones that exhibited
Ganong and CfC effects separately.
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We note here that this core feature of SRNs – the mix-
ing of external inputs and model-internal states – is precisely
the crucial property that proponents of purely feedforward
architectures object to in networks with feedback (such as
the interactive activation TRACE model; McClelland &
Elman, 1986). For instance, Norris et al. (2016) argued
that when models modulate bottom-up signals directly with
top-down influences, they necessarily induce hallucinations
(since bottom-up and top-down signals are mixed during
initial processing, purely bottom-up details cannot be dis-
tinguished). Since SRNs do the same, appealing to SRNs
(Norris, 1993) is actually appealing to an interactive system,
not a feedforward, autonomous one (for additional discus-
sion, see Luthra, Crinnion, Saltzman, & Magnuson, 2024).4

Having demonstrated that SRNs are interactive, let us
return to the demonstration by Pitt and McQueen (1998)
that compensation for coarticulation can be influenced by
transitional probabilities. We first note that evidence for
transitional probabilities modulating CfC does not itself con-
stitute evidence against lexically-mediated CfC; that is, both
transitional probabilities and lexical knowledge could, in the-
ory, influence CfC (indeed, the TRACEmodel would predict
transitional probability effects even on nonword inputs via
lexical-to-phoneme feedback). Furthermore, putatively lex-
ical influences on CfC cannot be explained by appealing to
transitional probabilities: In previous work, we have shown
that no single order ofn-gramor set ofn-grams (e.g., bigrams,
trigrams) can fully explain positive observations of LCfC
(Luthra et al., 2021; Magnuson, McMurray, Tanenhaus, &

4 Note that Cairns, Shillcock, Chater, and Levy (1995) is occasionally
cited as a demonstration that recurrent networks are feedforward and
can simulate compensation effects. For example, Pitt and McQueen
(1998) described it this way: “Their simulations showed that the com-
pensation effect after an ambiguous fricative can occur in a bottom-up
model with no lexical knowledge [p. 349].” However, the recurrent net-
work used by Cairns et al. did acquire lexical knowledge. They trained
a fully recurrent network to simultaneously activate nodes represent-
ing the previous, current, and next elements in a phoneme sequence.
They describe their system as “bottom-up” in the sense that it exhibits
sensitivity to lexical structure without explicit lexical representations
as targets. Notably, they explicitly describe recurrent connections as
feedback connections, although they also claim their results show that
interactivity is not necessary to simulate LCfC. As we have demon-
strated here, recurrent networks are in fact interactive in the plain sense
that inputs are mixed with top-down, model-internal information. As
to whether a system only trained on sublexical inputs and targets has
lexical knowledge, Elman (2011) provides a deep theoretical treatment
of how lexical knowledge of various sorts comes to be embodied in a
recurrent network emergently without explicit, pre-specified represen-
tations (similarly, see Magnuson et al., 2020, for a case where phonetic
representations emerge within a recurrent network that is never trained
on phonetic targets). On this view, there is no need for a literal ‘mental
lexicon’ with discrete entries. Instead, lexical knowledge comes to be
distributed across a complex system of weights learned by the network
that allows it to respond context-sensitively (e.g., lexically sensitively)
to sequential inputs. Thus, Cairns et al. (1995) is actually another exam-
ple of interaction in recurrent networks.

Aslin, 2003b). Furthermore, evidence that transitional prob-
abilities can modulate CfC does not constitute evidence
against top-down effects; for example, in the TRACE model
(McClelland & Elman, 1986), TP effects emerge through
top-down feedback from the lexicon.

Conclusion

In this paper, we have provided a formal demonstration that
SRNs are not feedforwardmodels, as they contain loops; fur-
ther, inputs and model-internal states are inextricably mixed
in SRNs, just as they are in other feedback models. This has
significant implications for ongoing debates over whether
perceptual and cognitive systems rely on top-down feed-
back, particularly in the domain of spoken word recognition.
Contra previous arguments (Norris, 1993), SRNs are not
feedforward. This severely reduces the previously asserted
coverage of autonomous theories, based on the erroneous
claim that SRNs are feedforward, autonomous systems.
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